Comparative genomics-guided loop-mediated isothermal amplification for characterization of Pseudomonas syringae pv. phaseolicola.
نویسندگان
چکیده
AIMS To design and evaluate a loop-mediated isothermal amplification (LAMP) protocol by combining comparative genomics and bioinformatics for characterization of Pseudomonas syringae pv. phaseolicola (PSP), the causal agent of halo blight disease of bean (Phaseolus vulgaris L.). METHODS AND RESULTS Genomic sequences of Pseudomonas syringae pathovars, P. fluorescens and P. aeruginosa were analysed using multiple sequence alignment. A pathovar-specific region encoding pathogenicity-related secondary metabolites in the PSP genome was targeted for developing a LAMP assay. The final assay targeted a polyketide synthase gene, and readily differentiated PSP strains from other Pseudomonas syringae pathovars and other Pseudomonas species, as well as other plant pathogenic bacteria, e.g. species of Pectobacterium, Erwinia and Pantoea. CONCLUSION A LAMP assay has been developed for rapid and specific characterization and identification of PSP from other pathovars of P. syringae and other plant-associated bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY This paper describes an approach combining a bioinformatic data mining strategy and comparative genomics with the LAMP technology for characterization and identification of a plant pathogenic bacterium. The LAMP assay could serve as a rapid protocol for microbial identification and detection with significant applications in agriculture and environmental sciences.
منابع مشابه
Pseudomonas syringae pv. phaseolicola can be separated into two genetic lineages distinguished by the possession of the phaseolotoxin biosynthetic cluster.
The bean (Phaseolus spp.) plant pathogen Pseudomonas syringae pv. phaseolicola is characterized by the ability to produce phaseolotoxin (Tox(+)). We recently reported that the majority of the Spanish P. syringae pv. phaseolicola population is unable to synthesize this toxin (Tox(-)). These Tox(-) isolates appear to lack the entire DNA region for the biosynthesis of phaseolotoxin (argK-tox gene ...
متن کاملGenome-wide DNA binding pattern of two-component system response regulator RhpR in Pseudomonas syringae
Although Pseudomonas syringae uses the two-component system RhpRS to modulate the expression of type III secretion system (T3SS) genes and pathogenicity, the molecular mechanisms and the regulon of RhpRS have yet to be fully demonstrated. We have performed a genome-wide analysis of RhpR binding to DNA prepared from P. syringae pv. phaseolicola in order to identify candidate direct targets of Rh...
متن کاملEthylene production by strains of the plant-pathogenic bacterium Pseudomonas syringae depends upon the presence of indigenous plasmids carrying homologous genes for the ethylene-forming enzyme.
The molecular characteristics of the ethylene-forming enzymes of strains of Pseudomonas syringae were tested. The ethylene-producing activities of the nine strains as measured in vivo and in vitro were similar, except for that of P. syringae pv. mori M5. A polyclonal antibody and a DNA probe for the ethylene-forming enzyme from P. syringae pv. phaseolicola PK2 were prepared to investigate homol...
متن کاملA novel L-amino acid ligase is encoded by a gene in the phaseolotoxin biosynthetic gene cluster from Pseudomonas syringae pv. phaseolicola 1448A.
In the phaseolotoxin biosynthetic gene cluster of Pseudomonas syringae pv. phaseolicola 1448A, the PSPPH_4299 gene encodes a novel L-amino acid ligase. The PSPPH_4299 protein synthesized various hetero-dipeptides containing basic amino acids in an ATP-dependent manner, and also synthesized alanyl-homoarginine, part of the phaseolotoxin scaffold.
متن کاملThe Stealth Episome: Suppression of Gene Expression on the Excised Genomic Island PPHGI-1 from Pseudomonas syringae pv. phaseolicola
Pseudomonas syringae pv. phaseolicola is the causative agent of halo blight in the common bean, Phaseolus vulgaris. P. syringae pv. phaseolicola race 4 strain 1302A contains the avirulence gene avrPphB (syn. hopAR1), which resides on PPHGI-1, a 106 kb genomic island. Loss of PPHGI-1 from P. syringae pv. phaseolicola 1302A following exposure to the hypersensitive resistance response (HR) leads t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied microbiology
دوره 107 3 شماره
صفحات -
تاریخ انتشار 2009